Computing and Counting the Longest Paths on Circular-Arc Graphs in Polynomial Time
نویسندگان
چکیده
The longest path problem asks for a path with the largest number of vertices in a given graph. In contrast to the Hamiltonian path problem, until recently polynomial algorithms for the longest path problem were known only for small graph classes, such as trees. Recently, a polynomial algorithm for this problem on interval graphs has been presented in [20] with running time O(n) on a graph with n vertices, thus answering the open question posed in [32]. Even though interval and circular-arc graphs look superficially similar, they differ substantially, as circular-arc graphs are not perfect; for instance, several problems – e.g. minimum coloring – are NP-hard on circular-arc graphs, although they can be efficiently solved on interval graphs. In this paper, we prove that for every path P of a circular-arc graph G, we can appropriately “cut” the circle, such that the obtained (not induced) interval subgraph G′ of G admits a path P ′ on the same vertices as P . This non-trivial result is of independent interest, as it suggests a generic reduction of a number of path problems on circular-arc graphs to the case of interval graphs with a multiplicative linear time overhead of O(n). As an application of this reduction, we present the first polynomial algorithm for the longest path problem on circular-arc graphs. In addition, by exploiting deeper the structure of circular-arc graphs, we manage to get rid of the linear time overhead of the reduction, and thus this algorithm turns out to have the same running time O(n) as the one on interval graphs. Our algorithm, which significantly simplifies the approach of [20], computes in the same time an n-approximation of the (exponentially large in worst case) number of different vertex sets that provide a longest path; in the case where G is an interval graph, we compute the exact number. Moreover, in contrast to [20], this algorithm can be directly extended with the same running time to the case where every vertex has an arbitrary positive weight.
منابع مشابه
Computing and Counting Longest Paths on Circular-Arc Graphs in Polynomial Time
The longest path problem asks for a path with the largest number of vertices in a given graph. In contrast to the Hamiltonian path problem, until recently polynomial algorithms for the longest path problem were known only for small graph classes, such as trees. Recently, a polynomial algorithm for this problem on interval graphs has been presented in Ioannidou et al. (2011) [19] with running ti...
متن کاملPolynomial-time algorithms for the Longest Induced Path and Induced Disjoint Paths problems on graphs of bounded mim-widthh
We give the first polynomial-time algorithms on graphs of bounded maximum induced matching width (mim-width) for problems that are not locally checkable. In particular, we give nO(w)-time algorithms on graphs of mim-width at most w, when given a decomposition, for the following problems: Longest Induced Path, Induced Disjoint Paths and H-Induced Topological Minor for fixed H. Our results imply ...
متن کاملPolynomial-Time Algorithms for the Longest Induced Path and Induced Disjoint Paths Problems on Graphs of Bounded Mim-Width
We give the first polynomial-time algorithms on graphs of bounded maximum induced matching width (mim-width) for problems that are not locally checkable. In particular, we give nO(w)-time algorithms on graphs of mim-width at most w, when given a decomposition, for the following problems: Longest Induced Path, Induced Disjoint Paths and H-Induced Topological Minor for fixed H. Our results imply ...
متن کاملLongest Paths in Circular Arc Graphs
We show that all maximum length paths in a connected circular arc graph have non–empty intersection.
متن کاملA Note on Longest Paths in Circular Arc Graphs
As observed by Rautenbach and Sereni [SIAM J. Discrete Math. 28 (2014) 335–341] there is a gap in the proof of the theorem of Balister et al. [Combin. Probab. Comput. 13 (2004) 311–317], which states that the intersection of all longest paths in a connected circular arc graph is nonempty. In this paper we close this gap.
متن کامل